AmbiEar: mmWave Based Voice Recognition in NLoS Scenarios

Jia Zhang*1, Yinian Zhou*1, Rui Xi¹, Shuai Li¹, Junchen Guo², Yuan He¹

> ¹Tsinghua University ²Alibaba DAMO Academy

The potential of mmWave sensing in voice recognition

Waveear (MobiSys'19) VocalPrint (SenSys'20) Wavoice (SenSys'21) RadioMic (arXiv 2021)

mmWave-based voice recognition in LoS scenarios

The existing direct sensing approaches can locate and track the throat in LoS scenarios.

mmWave-based voice recognition in NLoS scenarios?

The applicability of the existing direct sensing approaches is far from satisfactory in the real world.

Indirect sensing approach?

AmbiEar: mmWave based indirect sensing for voice recognition

AmbiEar converts the surrounding objects into ambient "ears".

The human location is unknown in advance and dynamic.

◆ The SNR of the reflected signals is low.

The surrounding object's vibration is intrinsically distorted.

How does AmbiEar work?

System design

Surrounding detection

Challenge 1: The human location is unknown in advance and dynamic.

Common component extraction

Challenge 2: The SNR of the reflected signals is low.

Signal superimposition

Voice Recognition

Challenge 3: The surrounding object's vibration is intrinsically distorted.

10/16

Evaluation

Implementation

Implementation on a COTS mmWave radar TI IWR1642.

- ◆A public voice data set TSRC is used to generate the training set (3000s).
- ◆Six volunteers are instructed to generate the testing set (1000s).

The experiment scenario

Overall performance

Scene	Method	WER		
		LoS	NLoS	Agg.
Meeting Room	AmbiEar	15.01%	16.19%	15.60%
	WaveEar	5.44%	95.92%	50.68%
Dormitory	AmbiEar	15.19%	16.58%	15.88%
	WaveEar	5.44%	96.37%	50.91%

3.2X

Accuracy v.s. distance

Accuracy v.s. noise

AmbiEar can handle various environment noise well.

Accuracy v.s. movement

AmbiEar is indeed applicable in dynamic scenarios.

AmbiEar

- First-of-its-kind approach for mmWave based voice recognition in NLoS scenarios.
- Provides a tailored design to utilize the low-SNR and semantically incomplete vibration signals for voice recognition.
- Implemented on the commercial device TI IWR1642 board and evaluated through experiments conducted under various settings.
- Has the potential to be applied to smart home, industrial control, smart cities, etc.

Jia Zhang j-zhang19@mails.Tsinghua.edu.cn